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Abstract— This paper describes a control strategy to stabi-
lize the position of a Micro Air Vehicle in wind gusts despite
unknown aerodynamic efforts. The proposed approach allows
to overcome the problem of gyroscopic coupling by taking
advantage from both the structure of the thrust mechanism,
which is made of two counter rotating propellers, and the
control strategy which involves a decoupling of the yaw rate
dynamics from the rest of the system dynamics. The controller
is designed by means of backstepping techniques allowing the
stabilization of the vehicle’s position while on-line estimating
the unknown aerodynamic efforts.
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I. I NTRODUCTION

The design of autonomous navigation strategy for Micro
Air Vehicles (MAV) has now become a very challenging
research area. Those small and discreet flying vehicles,
able to perform vertical takeoff and landing (VTOL), seem
to be of evident interest for civil and military operations
in urban environment. Autonomous VTOL vehicle capable
of stationary flight have been considered in recent years.
Significant research interest has been directed towards the
development of autonomous scale model helicopter due to
their high payload to power ratio [1], [5], [13]. Helicopters,
however, are extremely dangerous in practice due to the
exposed rotor blades. Very little has been done on the
development of secure platforms [6], [4]. Such platforms
have considerable potential for surveillance and inspection
roles in dangerous or awkward environments. The small
size, highly coupled dynamics and low cost of aerial robotic
devices poses a number of significant challenges in both
construction and control.

In this paper we discuss the dynamic modeling and
control strategy for a VTOL Micro Aerial Vehicle prototype
based on ducted fan technology. One of the projects of
the French National Direction of Armament, DGA, is to
supply the infantry with such micro-drones by 2007. As
a part of this project, the groupe Bertin Technology has
in charge the development of a ducted fan UAV which is
represented in figure 1. The work presented in this paper
has been developed in the framework of a collaboration
beetween, Bertin Tecnologies, the LAAS-CNRS and the I3S

This work is supported by the French National Direction of Armament
DGA, and by Bertin Technologies

J-M. Pflimlin is with Bertin Technologies, Parc d’activits du Pas du
Lac, 10 Bis Av. Amp̀ere, 78180 Saint-Quentin en Yvelines, and with
LAAS-CNRS, 7 Av. du Colonel Roche, 31077 Toulouse Cedex 4, France,
pflimlin@laas.fr
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Laboratory, which is devoted to the micro-drone modeling
and the elaboration of autonomous control strategies.

Fig. 1. A view of Bertin VTOL UAV

Fig. 2. Description of the Bertin VTOL UAV

This micro-drone, which is described in figure 2, must be
able to perform hovering flight for surveillance applications
despite possible wind perturbations. The automatic control
design must allow the vehicle to be easily operated by
an inexperienced user. At the end, the vehicle is expected
to execute flight path, defined by sequences of navigation
points, autonomously, while avoiding encountered obsta-
cles. However, designing such autonomous navigation ca-
pabilities requires to tackle following problems:
• The aerodynamic efforts that apply on the vehicle are

complex and hard to estimate and model. Indeed, due
to the low Reynolds number, the atypical shape of
the body, and the very wide range of angle of attack,
the aerodynamic effects are strongly nonlinear and



involve flow discontinuities (stall occuring within the
admissible range of angle of attack).

• The flight envelope is very wide: from hovering to
cruise flight the pitch angle varies from0 to 40
degrees. The micro-drone is able to transit from a
helicopter behaviour, when standing vertically, to a
plane behaviour with an annular wing executing a high-
speed horizontal flight, or dash-flight, during which its
velocity ranges within 100 to 150 kmph.

• This kind of vehicle is unstable and its dynamics along
the three axes are strongly coupled.

• Trim control does not exist for this kind of MAV.
Stabilizing the vehicle to a given attitude requires
the use of control surfaces. Therefore, the ability to
stabilize the vehicle in crosswind is strongly dependent
on the actuator saturation problems.

In this paper we describe a control strategy to stabilize
the position of the MAV in wind gusts despite unknown
aerodynamic efforts. The proposed approach allows to
overcome the problem of gyroscopic coupling by taking
advantage from both the mechanical structure of the thrust,
which is made of two counter rotating propellers, and the
control strategy which involves a decoupling of the yaw
rate dynamics from the rest of the system dynamics. The
controller is designed by means of backstepping techniques
allowing the stabilization of the MAV’s position while on-
line estimating the unknown aerodynamic efforts.

II. SYSTEM MODELING

A. Reference frames

Two reference frames are considered to model the system
(cf. [2]) :

• I is an inertial frame attached to the earth. It is
assumed to be Galilean

• A is body-fixed frame attached to the vehicle. The
attitudeR of the body-fixed frameA, with respect
to the inertial frameI, is represented by means of the
Euler anglesφ, θ, ψ.

The framesI and A are respectively associated to
the vector bases[e1, e2, e3] and [xb, yb, zb]. The relation
between framesI andA are recalled bellow (see [8]):

R = [xb, yb, zb]I
R−1 = RT = [e1, e2, e3]A

(1)

Furthermore, denoting byΩ = (p, q, r)T the rotation
velocity of the body-fixed frame with respect to the inertial
frame, expressed inA, and representing by̆Ω the skew
symmetric matrix associated toΩ, we get:

Ṙ = RΩ̆ (2)

B. Inertia matrix

The vehicle being symmetric with respect to the planes
(xb, zb) and(yb, zb), the zb-axis turns out to be a principal
axis of symmetry and supports the vehicle center of gravity.

With respect to the frameA, the inertia matrix takes then
the following simple form:

I =

 I1 0 0
0 I1 0
0 0 I2

 (3)

C. Forces acting on the system

In this section we make the simplifying hypothesis that
the various aerodynamic efforts are additional. The thrust
of the propellers, the lift and the drag forces generated
by the air flow along the body, and the efforts of mobile
surfaces are then considered separately. Experimental tests
in wind tunnel will provide the global aerodynamic wrench
as a function of the relative wind (aerodynamic velocity,
attack and sideslip angles), the deflection angle of mobile
surfaces, and the propellers rotation velocity. The aerody-
namic wrench will be considered in the simulation models
in order to test the robustness of the control laws. The
different forces acting on the system are:

• The weight,P = mge3, applied at the center of gravity
G.

• The thrust of propellers,T = −uzb, applied at the
point FT located on thezb-axis. T is collinear to the
lever arm vector

−−→
FTG. The counter rotating propellers

allow to counteract the effects of the reactive coupling
on the yaw axis. As a consequence, the thrust does
not generate any moment atG. The magnitudeu of
the thrustT constitutes the first control input of the
system.

• The aerodynamic efforts,Fext, are applied at the point
Fa. The location ofFa is hard to determine and
depends on the angle of attack. However, for symmetry
reasons this point is located on thezb-axis. Let us
denote byε the corresponding lever arm (

−−→
GFa = εzb).

Globally,Fa is located above the duct lip, the smaller
the angle of attack is, the farther from the lip the point
Fa is.

• The force generated by each control surface is denoted
by: Faili , i = 1..4. These forces induce a moment
Γail = [Γl,Γm,Γn]T at G and a resulting forceFail.

Fail = − 1
L
zb ∧ Γail , ΣΓail (4)

whereL represents the lever arm of the forces gen-
erated by the control surfaces (see figure 3).Γail
constitutes the second control input of the sysyem.

Figure 3 shows the different efforts applied on the MAV.

D. Dynamic equations

The dynamic representation of the system is given by
the application of the fundamental theorem of Mechanics
(Newton’s theorem) expressed in the inertial frameI and
the theorem of angular momentum (Euler’s theorem) ex-



Fig. 3. Description of forces acting on the micro-drone

pressed in the body frameA (see [7]).
ξ̇
mv̇

Ṙ
IΩ̇

 =


v
−uRe3 +mge3 +RΣΓail + Fext
RΩ̆
−Ω ∧ IΩ + Γail + σRTFext

 (5)

The parameters[ξ, v,R,Ω] andσ are defined as follows:

• ξ is the position of the center of gravity with respect
to I, expressed in the inertial base[e1, e2, e3],

• v is the velocity of the center of gravity with respect
to I expressed in the inertial base[e1, e2, e3],

• R is the above-mentionned transformation matrix from
I to A,

• Ω is the angular velocity vector of the body frame
relative to the inertial frame, expressed in the body
base[xb, yb, zb],

• σ = εz̆b
1

III. PRELIMINARY ANALYSIS OF THE DYNAMICS

Interesting elements of the drone’s behaviour in flight
can be extracted from the dynamic equation given by (5).
In a first part, we focus on the existing decoupling between
the yaw dynamics and the forward flight dynamics. The
problem of zero dynamics is then addressed in a second
subsection.

A. Decoupling of the yaw dynamics

Thanks to the form of the inertia matrix (cf. (II-B)) , it
can be shown that:

Ω ∧ IΩ =

 I2qr − I1qr
I1pr − I2pr
0

 with Ω =

 p
q
r


Introducing this relation in the expression of the angular
moment derivative equation, and considering only the yaw
rate,’r’, equation, it comes:

I2ṙ = Γn (6)

1The notationz̆b denotes the skew symmetric matrix of vectorzb.

Reminding thatFa is on zb-axis and therefore there is no
aerodynamic yaw moment. Consequently, considering that
ṙ only depends on the controlΓn, and thatFail does not
depend onΓn (see (4)), the yaw rate equation turns out to be
decoupled from the other equations. Assume thatr(0) = 0.
By choosingΓn = 0 one ensures thatr = 0 for t > 0. In
practice, it is sensible to implement a control that acts to
preserve this condition. Choose

Γn = −krr (7)

wherekr > 0. In the rest of the paper it will be assumed
that r = 0.

B. The problem of zero dynamics

The zero dynamics of a nonlinear system are the internal
dynamics of the system subject to the constraint that the
outputs (and, therefore, all derivatives of the outputs) are
set to zero for all times [10], [9]. Nonlinear systems with
non-asymptotically stable zero-dynamics are called strictly
(or weekly, if the zero dynamics are marginally stable) non-
minimum phase.

In this section, we show that the system (5), is strictly
non-minimum phase and that a naive stabilization control
design would result in undesirable non-decaying oscillations
in the motion of the vehicle. Indeed, the coupling of the
thrustT and torque controlΓail on the airframe dynamics
leads to the presence of small-body-forcesRΣΓail that
result in zero-dynamics. The first step in analyzing the zero
dynamics nature is to set to zero the outputs and all their
time-derivatives for allt ≥ 0. Assume thatFext = 0 and
considerξ as the output vector. In this case, the translational
dynamics is fully actuated2. Assume now that a control law
stabilising ξ and v towards zero exists. In this case, the
translational dynamics of (5) becomes:

ue3 + ΣΓail = mgRT e3 (8)

Recalling (4) and multiplying both sides of (8) by̆eT3 , the
transpose of the skew symmetric matrix of vectore3, it
yields:

πe3Γail = LmgĕT3RT e3, πe3 = I3 − e3e
T
3

Substituting the above relation in the moment equation of
system (5) and using the fact that the third component of
Ω is null (r = 0), it yields the dynamic equation of an
idealized spherical pendulum:

πe3Ω̇ = −Lm
I1

gĕ3R
T e3 (9)

To study the stability of this dynamics, define a Lyapunov
function candidateV

V =
1
2

ΩTπe3Iπe3Ω +
|L|m
I1

g(1− eT3 RT e3) (10)

2This is due to the fact that the the matrixRΣ is of rank two with
entries only in the first and second columns and thatRe3 ∈ Ker(Σ).



corresponding to the total energy of a pendulum of length
I1
m|L| . DifferentiatingV, it yields:

V̇ = 0 if L < 0,

= −2
Lm

I1
gΩT ĕ3R

T e3 if L > 0.

Depending on the sign ofL, the zero dynamics have
different qualitative behaviour. ForL < 0, the input-
output system is weekly non-minimum phase (the zero
dynamics are marginally stable). Note, however, thatL > 0
corresponds to an idealized inverted spherical pendulum.
It follows from classical Lyapunov theory and the above
discussion that the system is strictly non-minimum phase.

The first contribution of the paper is to show that,
deporting the control point away from the center of masse
of the vehicle, in the opposite direction to the mobile
surfaces location, can lead to cancel the zero dynamics
effects inherent in the system. More precisely, letξD be
the new control point:

ξD = ξ +
−−→
GD, (11)

Then, if
−−→
GD is a translation vector along thezb axis

defined by:

−−→
GD = dzb with d = − I1

mL
, (12)

The dynamics of system (5) becomes:
˙ξD = vD
m ˙vD = −ūRe3 +mge3 + (I3×3 −mdRĕ3I

−1σRT )Fext
Ṙ = RΩ̆

IΩ̇ = Γail + σRTFext
(13)

where the zero dynamics do not appear any more and:

ξD = ξ + dRe3

vD = v + dRΩ̆e3

ū = u+md(p2 + q2)

In the next section, the above system will be used to
develop the control design for the stabilization task in
presence of perturbation forces (constant gusts).

IV. CONTROL DESIGN

In our modeling, there are coarsely two sources of
incertainty : the components of aerodynamic forces applied
to the body, and the point of application of those efforts.
More precisely, in model (13),Fext andσ are unknown. The
main difficulties comes from the termmdRĕ3I−1σRT in
the tranlational dynamics and the bilinear formσRTFext
in the moment equations. Both difficulties can be overcome
with the following considerations:

• As ‖R‖ = 1 and‖z̆b‖ = 1, the magnitude of the per-
turbating termmdRĕ3I−1σRT is strongly dependent
on the ratiomdI1 ||σ|| = md

I1
ε. Taking into account the

expression ofd given by (12), this ratio is equivalent
to ε

L , i.e. the ratio between the lever arm of the
aerodynamic forces and the lever arm of the control

surfaces. For this kind of sit-on-tail VTOL this ratio
is usually weak (εL << 1). Therefore, the approach
taken in our control algorithm, consists in designing
a robust controller for the system without considering
the perturbation term and analyze the robustness of
the closed loop with respect to the perturbation term.
For the sake of clarity of the presentation, we address
the robustness problem by analyzing some simulation
results and leave further discussion on dynamic pertur-
bation in a further publication.

• Using the expression ofσ (see (II-D)), σRTFext
can be written as:εz̆bRTFext, i.e., asε is a scalar:
z̆bRT εFext. At this stage, the unknown vectorMext,
homogeneous to a moment, is defined as follows:

Mext = εFext

Finally, both unknown vectorsFext and Mext are taken
into account in the control design3.Those considerations
being assumed, the model used for the control design is
the following one:

˙ξD
m ˙vD
Ṙ
IΩ̇

 =


vD
−ūRe3 +mge3 + Fext
RΩ̆
Γail + z̆bRTMext

 (14)

The backstepping technique is used to design a control law
which adapts to incertaintiesFext andMext.

Step 1. Let ξs be a constant desired position for the
control pointD. Defineδ1 = ξD − ξs as the error between
the actual and desired position of the control pointD of
the MAV. The control law must ensure the convergence of
the errorδ1 towards zero. Therefore, defineS1 as a storage
function associated with the error termδ1:

S1 =
1
2
δT1 δ1

DifferentiatingS1, it yields:

Ṡ1 = δT1 δ̇1

Introducing a gaink1 > 0, recalling equation (14) and
differentiating δ̇1, it yields:

δ̇1 = ξ̇D = vD = −k1δ1 + k1δ1 + vD︸ ︷︷ ︸
δ2
m

Consequently, at the end of the first step of backstepping,
it comes :

Ṡ1 = −k1|δ1|2 + 1
mδ

T
1 δ2

δ̇1 = −k1δ1 + 1
mδ2

(15)

Step 2. δ2 has been introduced, in the expression ofδ̇1,
as the difference between the real velocity ofD and a virtual
control which would lead to an exponential convergence of
δ1, whenδ2 = 0. To stabilize the system, the convergence of

3keep in mind thatMext does not represent the aerodynamic moment.
It is only a vector colinear toFext



δ2 must be ensured. In the expression of the time derivative
δ̇2, the unknown vectorFext appears via the translation
dynamics. This unknown vector will be estimated in the
control law by F̂ext. The convergence of the error̃Fext
between the real aerodynamic forces and the estimated ones
shall be ensured too. Therefore, a second Lyapunov function
S2 is defined as follows:

S2 = S1 +
1
2
δT2 δ2 +

1
2
F̃TextΓ

−1
F F̃ext

whereδ2 = mvD +mk1δ1 and F̃ext = Fext − F̂ext. In the
expression ofS2, ΓF is a scalar gain which tunes up the
dynamics of the adaption ofFext. Using the expression of
Ṡ1 given by (15), it comes:

Ṡ2 = −k1|δ1|2 +
1
m
δT1 δ2 + δT2 δ̇2 − F̃TextΓ−1

F
˙̂
Fext

Introducing the gaink2 > 0, the time derivativėδ2 is given
by:

δ̇2 = mk1δ̇1 +mv̇D
= −mk2

1δ1 + k1δ2 − ūRe3 +mge3 + Fext
= −mk2

1δ1 − k2δ2 + (k1 + k2)δ2 − ūRe3

+mge3 + F̂ext + F̃ext

(16)

Using (16) in the expression oḟS2, and gathering the terms4

δT1 δ2 and F̃ext, it comes:

Ṡ2 = −k1|δ1|2 − k2|δ2|2 + ( 1
m −mk

2
1)δT1 δ2

+δT2
(
(k1 + k2)δ2 − ūRe3 +mge3 + F̂ext

)
+F̃Text(δ2 − Γ−1

F
˙̂
Fext)

At this stage, let us introduce:{
τ1 = δ2
α1 = ( 1

m −mk
2
1)δ1 + (k1 + k2)δ2 +mge3 + F̂ext

(17)
Then it can be shown thaṫS2 exresses as:

Ṡ2 = −k1|δ1|2−k2|δ2|2+δT2 (α1 − ūRe3)︸ ︷︷ ︸
−δ3

+F̃Text(τ1−Γ−1
F

˙̂
Fext)

If −ūRe3 was a control vector, the adaptive filterτ1 and
the control lawα1 would cancel the influence of̃Fext
and guarantee the non positivity oḟS2. However, if ū is
really a control input, the orientation of the thrustRe3 is
not. Therefore, the differenceδ3 between the real thrust
ūRe3 and the virtual thrustα1 is introduced. Convergence
of δ3 must be ensured. At the end of the second step of
backstepping, it comes:

Ṡ2 = −k1|δ1|2 − k2|δ2|2 − δT2 δ3 + F̃Text(τ1 − Γ−1
F

˙̂
Fext)

δ̇2 = − 1
m
δ1 − k2δ2 − δ3 + F̃ext

(18)

Step 3. Let us introduce now the third Lyapunov func-
tion S3 :

S3 = S2 + 1
2δ
T
3 δ3 with δ3 = ūRe3 − α1

4Let us recall that, terms in Lyapunov functions being scalar, it comes
δT2 F̃ext = F̃Textδ2

Using the expression oḟS2 given by (18), it can be deducted
that:

Ṡ3 = −k1|δ1|2−k2|δ2|2−δT2 δ3+F̃Text(τ1−Γ−1
F

˙̂
Fext)+δT3 δ̇3

With δ̇3 given by:

δ̇3 = ˙̄uRe3 + ūṘe3 − α̇1 = ˙̄uRe3 + ūRΩ̆e3 − α̇1

Expressions oḟδ1 andδ̇2 given by (15) and (18) respectively
lead to the following formulation oḟα1:

α̇1 = ( 1
m −mk

2
1)δ̇1 + (k1 + k2)δ̇2 + ˙̂

Fext
= ( 1

m −mk
2
1)(−k1δ1 + 1

mδ2)

+(k1 + k2)(− 1
mδ1 − k2δ2 − δ3 + F̃ext) + ˙̂

Fext

Introducing :

K1 = −k1( 2
m −mk

2
1)− k2

m
K2 = 1

m2 − k2
1 − k1k2 − k2

2

Final expression oḟδ3 is given as follows:

δ̇3 = ˙̄uRe3 + ūRΩ̆e3 −K1δ1 −K2δ2

+(k1 + k2)δ3 − ˙̂
Fext − (k1 + k2)F̃ext

Reporting this expression iṅS3, it comes:

Ṡ3 = −k1|δ1|2 − k2|δ2|2 − δT2 δ3 + (k1 + k2)|δ3|2

+δT3 ( ˙̄uRe3 + ūRΩ̆e3 −K1δ1 −K2δ2 − ˙̂
Fext)

+F̃Text(τ1 − (k1 + k2)δ3 − Γ−1
F

˙̂
Fext)

Introducing the gaink3 > 0, the following functions are
defined:{

τ2 = τ1 − (k1 + k2)δ3
α2 = K1δ1 + (1 +K2)δ2 − (k1 + k2 + k3)δ3 + ΓF τ2

(19)
It can be easily verified thaṫS3 expresses as:

Ṡ3 = −k1|δ1|2 − k2|δ2|2 − k3|δ3|2

+F̃Text(τ2 − Γ−1
F

˙̂
Fext) + δT3 (ΓF τ2 − ˙̂

Fext)
+δT3 ( ˙̄uRe3 + ūRΩ̆e3 − α2)︸ ︷︷ ︸

δ4

The explicit form of ˙̄uRe3 + ūRΩ̆e3 is given by:

˙̄uRe3 + ūRΩ̆e3 = R

 ūq
−ūp

˙̄u

 (20)

Therefore, if the roll rate and the pitch rate were control
inputs, the adaptive filterτ2 and the control law onp, q et
˙̄u defined by :  ūq

−ūp
˙̄u

 = RTα2

would ensure the non-positivity oḟS3. However,Ω is still
not a control input, and a new gapδ4 between the virtual
control α2 and the real vectoṙ̄uRe3 + ūRΩ̆e3 has to be



defined. At the end of the third step of the backstepping, it
comes:

Ṡ3 = −k1|δ1|2 − k2|δ2|2 − k3|δ3|2 + δT3 δ4

+F̃Text(τ2 − Γ−1
F

˙̂
Fext) + δT3 (ΓF τ2 − ˙̂

Fext)

δ̇3 = δ2 − k3δ3 + δ4 − (k1 + k2)F̃ext + ΓF τ2 − ˙̂
Fext

(21)
Step 4. In the expression of the time derivativėδ4,

appears the angular velocity dynamics, perturbated by the
second unknown parameterMext. In the control law, this
term will be estimated byM̂ext. To ensure the convergence
of the estimation error̃Mext, the following Lyapunov func-
tion S4 is defined:

S4 = S3 +
1
2
δT4 δ4 +

1
2
M̃T
extΓ

−1
M M̃ext

with δ4 = ˙̄uRe3 + ūRΩ̆e3−α2 andM̃ext = Mext− M̂ext

ΓF is a scalar gain which tunes up the dynamics of the
adaption ofMext . It can be deducted that:

Ṡ4 = Ṡ3 + δT4 δ̇4 − M̃T
extΓ

−1
M

˙̂
Mext

where δ̇4 is given by:

δ̇4 = ¨̄uRe3 + 2 ˙̄uRΩ̆e3 + ūRΩ̆2e3 + ūR ˙̆Ωe3 − α̇2

Noticing that:

RΩ̃2e3 = R

−q2 qp 0
qp −p2 0
0 0 −(p2 + q2)

0
0
1

 = −(p2 + q2)Re3

Then δ̇4 expresses as5:

δ̇4 =
[
¨̄u− ū(p2 + q2)

]
Re3 + 2 ˙̄uRΩ̆e3 − ūRĕ3Ω̇− α̇2

=
[
¨̄u− ū(p2 + q2)

]
Re3 + 2 ˙̄uRΩ̆e3

−ūRĕ3I−1(Γail + z̆bRTMext)− α̇2

Expressingτ2 with respect toδ2 andδ3 (see (17) and (19)),
the time derivativeα̇2 can be written as follows:

α̇2 = K1δ̇1 + (1 +K2)δ̇2 − (k1 + k2 + k3)δ̇3
+ΓF (δ̇2 − (k1 + k2)δ̇3)

= K1δ̇1 + (1 +K2 + ΓF )δ̇2
−
(
(k1 + k2)(1 + ΓF ) + k3

)
δ̇3

Reporting in α̇2 the expression ofδ̇i, i = 1..3 given by
(15), (18) and (21) respectively, and gathering the terms, it
can be shown that:

α̇2 = G1δ1+G2δ2+G3δ3+G4F̃ext+G5( ˙̂
Fext−ΓF τ2−δ4)

with 
G1 = −k1K1 − 1

m (K2 + 1 + ΓF )
G2 = K1

m − k2(K2 + 1 + ΓF )−G5)
G3 = −(K2 + 1 + ΓF ) +G5k3

G4 = K2 + 1 + ΓF +G5(k1 + k2)
G5 = (k1 + k2)(1 + ΓF ) + k3

5Recall that for any vectoru, v: ŭv = u× v = −v × u = −v̆u

Finally, isolating the estimation errors̃Fext andM̃ext, the
following expression oḟδ4 is obtained:

δ̇4 = ¨̄uRe3 − ūRĕ3I−1Γail
−ū(p2 + q2)Re3 + 2 ˙̄uRΩ̆e3 − ūRĕ3I−1z̆bRT M̂ext

−G1δ1 −G2δ2 −G3δ3 −G5( ˙̂
Fext − ΓF τ2 − δ4)

−ūRĕ3I−1z̆bRT M̃ext −G4F̃ext
(22)

In equation (22), the terms are arranged in such way that:
the first line is the control vector input, the second and
third lines gather “measurable” terms (internal states of the
system and estimations of the unknown vectors) which can
be integrated directly in a control law, and the last line
contains the estimation errors of the unknown parameters.
At this stage, introducingk4 > 0, the following functions
are defined:

τ3 = τ2 −G4δ4
α3 = δ3 + (k4 +G5)δ4 − ū(p2 + q2)Re3

+2 ˙̄uRΩ̆e3 − ūRĕ3I−1z̆bRT M̂ext

−G1δ1 −G2δ2 −G3δ3 −G5ΓF (τ3 − τ2)
(23)

Furthermore, the explicit form of the vector̄̈uRe3 −
ūRĕ3I−1Γail is given by:

¨̄uRe3 − ūRĕ3I−1Γail = R

 ū
I1

Γm
− ū
I1

Γl
¨̄u


The components of this vector are clearly control inputs

of the system. Introducing theν function, that will be
identified later, the control law is given by the following
expression which is well defined so long as the thrustū
does not vanish: ū

I1
Γm

− ū
I1

Γl
¨̄u

 = RT (−α3 + ν) (24)

Using this control law,Ṡ4 expresses as:

Ṡ4 = −k1|δ1|2 − k2|δ2|2 − k3|δ3|2 − k4|δ4|2

+δT4 ν +G5δ
T
4 (ΓF τ3 − ˙̂

Fext) + δT3 (ΓF τ2 − ˙̂
Fext)

+F̃Text(τ3 − Γ−1
F

˙̂
Fext)

−M̃T
ext

[
(ūRĕ3I−1z̆bRT )T δ4 + Γ−1

M
˙̂
Mext

]
At this stage, adaptive filters are chosen to cancel the action
of F̃ext andM̃ext in the expression oḟS4:

˙̂
Fext = ΓF τ3
˙̂
Mext = −ΓM (ūRĕ3I−1z̆bRT )T δ4

(25)

Assuming this choice of adaptive filters, the following
expression ofṠ4 can be deduced:

Ṡ4 = −k1|δ1|2 − k2|δ2|2 − k3|δ3|2 − k4|δ4|2
+δT4 ν + δT3 ΓF (τ2 − τ3)

Using (23), it is clear that:

τ2 − τ3 = G4δ4



To ensure the non positivity oḟS4, ν is naturally defined as
follows:

ν = −G4ΓF δ3 (26)

At the end of backstepping process, an adaptive control
Lyapunov function has been built, and its time derivative is
non-positive:

Ṡ4 = −k1|δ1|2 − k2|δ2|2 − k3|δ3|2 − k4|δ4|2 (27)

To achieve the control design, the control lawΓn defined
by equation (6), which ensures the stabilization of the yaw
rate dynamics, must be added. Let us introduce the ultimate
Lyapunov functionS5 :

S5 = S4 +
1
2
r2

Using (27), and (6), the derivativėS5 expresses as follows:

Ṡ5 = −k1|δ1|2 − k2|δ2|2 − k3|δ3|2 − k4|δ4|2 + r
Γn
I2

and can be finally written:

Ṡ5 = −k1|δ1|2 − k2|δ2|2 − k3|δ3|2 − k4|δ4|2 − k5r
2 (28)

Theorem 1:The system (14) is globally adaptively sta-
bilizable by the control law given by (24) and by the
yaw moment control law defined by (7). Moreover, the
adaptive filters chosen in (25) ensure the convergence of
the estimated unknown vectors to their real value. More
precisely,

ξD −→ ξs
F̂ext −→ Fext
M̃ext −→ 0

r −→ 0
Proof . Equation (28) implies thatδ1, δ2 δ3, δ4, r and

their successive time-derivative converge to zero. Ifδ1
tends to zero, thenξD tends toξs. In the same way, the
convergence oḟδ1 to zero means the convergence ofvD
to zero. The expression oḟδ2 given by (18) implies that
F̃ext goes to zero, too. The convergence ofδ3 indicates that
the thrust direction is tilted to counteract the aerodynamic
forces: ūRe3 −→ mge3 + Fext. The controller will adapt
the thrust intensity in order to maintain the lift (ū −→∥∥mge3 +Fext

∥∥). The expression ofα2 given by (19) shows
that ˙̄uRe3 + ūRΩ̆e3 tends to zero. It means (cf. the explicit
form of this vector given by (20)) thatΩ converges to zero,
as ˙̄u does. Finally, taking into account the control law given
by (24), δ̇4 expresses as:

δ̇4 = −(1 + ΓFG4)δ3 − k4δ4 −G4F̃ext
−(ΓM ūRĕ3I−1z̆bRT )M̃ext

Its convergence naturally implies the convergence ofM̃ext

to zero.�

V. SIMULATION RESULTS

Simulations were performed on the base of model (13),
including the perturbating termmdRĕ3I−1σRT neglected
in the control design. The figure 4 shows the evolution
of vehicle’s position and attitude during the stabilization
towards a fixed desired position, in presence of constant
wind gusts. On-line estimation of the unknown parameters
is also shown: the graph ofFext with respect to time
represents the evolution of̂Fext components (dashed line)
and the corresponding vector obtained from the orientation
dynamics1

εM̂ext (solid line). Due to the perturbating term,
the relation F̂ext = 1

εM̂ext is lost. However, the adap-
tive controller succeeds in reaching the desired position.
Figure 5 shows the vehicle flying behaviour when the on-
line estimation of unknown parameters is deactivated: the
vehicle is drifted away by crosswinds, and get stabilized to
an equilibrium point deported from the expected position.

Fig. 4. Flying behaviour of the UAV in crosswind with the adaptive
controller

Fig. 5. Stabilization of the vehicle’s position with and without
on-line estimation of unknown parameters: starting position(0, 0);
desired final position(1, 2).



VI. CONCLUDING REMARKS

In this draft, we have proposed a simple model for
the dynamics of a VTOL Micro Aerial Vehicle proto-
type that includes certain important aerodynamics effects.
The unknown aerodynamical efforts are considered to be
constant (or quasi-constant). An adaptive control design
allowing the stabilization of the MAV to a given position
is proposed. A theorem is given proving the convergence
of the estimation errors to zero and simulation results are
provided to illustrate the proposed concept.

In a further work, a modification of the proposed design
will be undertaken to improve robustness of the closed loop
design with respect to the ignored term and fluctuation in
the aerodynamical efforts. To improve robustness of the
adaptation process and to insure practical stability of MAV
in a small compact domain around the desired position,
we will add an additionalσ-modification to the estimator
dynamics.
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