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Abstract—This paper describes a control strategy to stabi- Laboratory, which is devoted to the micro-drone modeling
lize the position of a Micro Air Vehicle in wind gusts despite  and the elaboration of autonomous control strategies.
unknown aerodynamic efforts. The proposed approach allows
to overcome the problem of gyroscopic coupling by taking
advantage from both the structure of the thrust mechanism,
which is made of two counter rotating propellers, and the
control strategy which involves a decoupling of the yaw rate
dynamics from the rest of the system dynamics. The controller
is designed by means of backstepping techniques allowing the
stabilization of the vehicle’s position while on-line estimating
the unknown aerodynamic efforts.
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I. INTRODUCTION

The design of autonomous navigation strategy for Micro
Air Vehicles (MAV) has now become a very challenging
research area. Those small and discreet flying vehicles, Fig. 1. A view of Bertin VTOL UAV
able to perform vertical takeoff and landing (VTOL), seem
to be of evident interest for civil and military operations
in urban environment. Autonomous VTOL vehicle capable
of stationary flight have been considered in recent years. upper center body
Significant research interest has been directed towards the
development of autonomous scale model helicopter due to
their high payload to power ratio [1], [5], [13]. Helicopters,
however, are extremely dangerous in practice due to the
exposed rotor blades. Very little has been done on the duct
development of secure platforms [6], [4]. Such platforms
have considerable potential for surveillance and inspection
roles in dangerous or awkward environments. The small
size, highly coupled dynamics and low cost of aerial robotic
devices poses a number of significant challenges in both tail fin
construction and control. lower center body

In this paper we discuss the dynamic modeling and
control strategy for a VTOL Micro Aerial Vehicle prototype
based on ducted fan technology. One of the projects of
the French National Direction of Armament, DGA, is to
supply the infantry with such micro-drones by 2007. As This micro-drone, which is described in figure 2, must be
a part of this project, the groupe Bertin Technology hasple to perform hovering flight for surveillance applications
in charge the development of a ducted fan UAV which igjespite possible wind perturbations. The automatic control
represented in figure 1. The work presented in this papgesign must allow the vehicle to be easily operated by
has been developed in the framework of a collaboratiogn inexperienced user. At the end, the vehicle is expected
beetween, Bertin Tecnologies, the LAAS-CNRS and the I3& execute flight path, defined by sequences of navigation
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Fig. 2. Description of the Bertin VTOL UAV



involve flow discontinuities (stall occuring within the With respect to the framel, the inertia matrix takes then

admissible range of angle of attack). the following simple form:
« The flight envelope is very wide: from hovering to
cruise flight the pitch angle varies fror to 40 L 0 0
degrees. The micro-drone is able to transit from a I = 0 I 0 (3)
helicopter behaviour, when standing vertically, to a 0 0 I

plane behaviour with an annular wing executing a high- .
speed horizontal flight, or dash-flight, during which itsC: Forces acting on the system

velocity ranges within 100 to 150 kmph. In this section we make the simplifying hypothesis that
« This kind of vehicle is unstable and its dynamics alonghe various aerodynamic efforts are additional. The thrust
the three axes are strongly coupled. of the propellers, the lift and the drag forces generated

o Trim control does not exist for this kind of MAV. by the air flow along the body, and the efforts of mobile
Stabilizing the vehicle to a given attitude requiressyrfaces are then considered separately. Experimental tests
the use of control surfaces. Therefore, the ability tgn wind tunnel will provide the global aerodynamic wrench
stabilize the vehicle in crosswind is strongly dependerys a function of the relative wind (aerodynamic velocity,
on the actuator saturation problems. attack and sideslip angles), the deflection angle of mobile

In this paper we describe a control strategy to stabilizeurfaces, and the propellers rotation velocity. The aerody-

the position of the MAV in wind gusts despite unknownnamic wrench will be considered in the simulation models
aerodynamic efforts. The proposed approach allows fa order to test the robustness of the control laws. The
overcome the problem of gyroscopic coupling by takinglifferent forces acting on the system are:

ad\_/antgge from both the mechanlca_ll structure of the thrust, | e weight,P = mges, applied at the center of gravity
which is made of two counter rotating propellers, and the

control strategy which involves a decoupling of the yaw | Tne thrust of propellersT’ = —uz,, applied at the
rate dynamics from the rest of the system dynamics. The point Fr- located on thex,-axis. T is collinear to the
controller is designed by means of backstepping techniques lever arm vectom. The counter rotating propellers
allowing the stabilization of the MAV’s position while on- allow to counteract the effects of the reactive coupling

line estimating the unknown aerodynamic efforts. on the yaw axis. As a consequence, the thrust does

not generate any moment &t. The magnitude. of

[I. SYSTEM MODELING ) _ X
the thrustT' constitutes the first control input of the

A. Reference frames system.
Two reference frames are considered to model the systeme The aerodynamic effortd;...., are applied at the point
(cf. [2]) : F,. The location of F,, is hard to determine and
. 7 is an inertial frame attached to the earth. It is  d€Pends onthe angle of attack. However, for symmetry
assumed to be Galilean reasons this point is Iocqted on theg-axis. Let us
. A is body-fixed frame attached to the vehicle. The  denote by the corresponding lever armir¢7, = czp).
attitude R of the body-fixed framed, with respect Globally, F, is located above the duct lip, the smaller
to the inertial frameZ, is represented by means of the the.angle of attack is, the farther from the lip the point
Euler anglesp, 8, 1. Fa ls.

« The force generated by each control surface is denoted
by: F,u,, i = 1..4. These forces induce a moment
Lo = [T, T, T]T at G and a resulting forcé,;;.

The framesZ and A are respectively associated to
the vector bases$e,es, e3] and [xy, ys, 25). The relation
between frameg§ and.A are recalled bellow (see [8]):

1
R = [z, Yy, 2]z Fay =2 ATqi 2 STy (4)
R_l = RT = [61,62, 63]_,4 (1) L

where L represents the lever arm of the forces gen-
erated by the control surfaces (see figure B);;
constitutes the second control input of the sysyem.

Furthermore, denoting by2 = (p,q,7)” the rotation
velocity of the body-fixed frame with respect to the inertial
frame, expressed i, and representing by? the skew
symmetric matrix associated fo, we get: Figure 3 shows the different efforts applied on the MAV.

R =RN @) D. Dynamic equations

B. Inertia matrix The dynamic representation of the system is given by

The vehicle being symmetric with respect to the planethe application of the fundamental theorem of Mechanics
(zp, 2p) and (yp, 25), the z,-axis turns out to be a principal (Newton's theorem) expressed in the inertial frafhend
axis of symmetry and supports the vehicle center of gravitghe theorem of angular momentum (Euler's theorem) ex-



Reminding thatF, is on z,-axis and therefore there is no
aerodynamic yaw moment. Consequently, considering that
7 only depends on the contrdl,, and thatF,; does not
depend o, (see (4)), the yaw rate equation turns out to be
decoupled from the other equations. Assume t{aj = 0.

By choosingI’,, = 0 one ensures that= 0 for ¢ > 0. In
practice, it is sensible to implement a control that acts to
preserve this condition. Choose

‘Wind Velocity
_—

T, =—kr @)

“oab wherek, > 0. In the rest of the paper it will be assumed
thatr = 0.

ie3

Fig. 3. Description of forces acting on the micro-drone
B. The problem of zero dynamics

The zero dynamics of a nonlinear system are the internal
dynamics of the system subject to the constraint that the

pressed in the body framd (see [7]). outputs (and, therefore, all derivatives of the outputs) are
. set to zero for all times [10], [9]. Nonlinear systems with
£ v non-asymptotically stable zero-dynamics are called strictly
mo | _ | —uRez +mges + REwi + Fext (5) (or weekly, if the zero dynamics are marginally stable) non-
R RQ minimum phase.
IO —QATIQ+ Lot + oRT Fogy In this section, we show that the system (5), is strictly

non-minimum phase and that a naive stabilization control
. . . ) design would result in undesirable non-decaying oscillations
- §is the posmon_of the_cenfner of gravity with respect, yhe motion of the vehicle. Indeed, the coupling of the
tO.I’ expressgd in the inertial bage, €2, 63],' thrustT" and torque control’,;; on the airframe dynamics
e v is the veI00|ty. of thg ceqter of gravity with respectioads to the presence of small-body-forc@ET,,, that
to I expressed in the inertial bage,, 62’_63}’ . result in zero-dynamics. The first step in analyzing the zero
» R is the above-mentionned transformation matrix fron?jynamics nature is to set to zero the outputs and all their
z tp A, . time-derivatives for allt > 0. Assume thatF,.,; = 0 and
- O IS the angulgr vglocny vector of the pody frameconsiderﬁ as the output vector. In this case, the translational
relative to the inertial frame, expressed in the bodyynamics is fully actuatéd Assume now that a control law
base[“jbl’yb’zb]' stabilising ¢ and v towards zero exists. In this case, the
*I=E% translational dynamics of (5) becomes:

The parameterg, v, R, 2] ando are defined as follows:

Ill. PRELIMINARY ANALYSIS OF THE DYNAMICS
ues + Xlq = mgR es (8)

Interesting elements of the drone’s behaviour in flight

can be extracted from the dynamic equation given by (5Recalling (4) and multiplying both sides of (8) la, the
In a first part, we focus on the existing decoupling betweelanspose of the skew symmetric matrix of vectqr it
the yaw dynamics and the forward flight dynamics. The/ields:
problem. of zero dynamics is then addressed in a second 7o, Tt = LmgéTRTeq, 7o, = Iy — egel
subsection. 3 3

Substituting the above relation in the moment equation of
system (5) and using the fact that the third component of
Thanks to the form of the inertia matrix (cf. (II-B)) , it () is null (- = 0), it yields the dynamic equation of an

A. Decoupling of the yaw dynamics

can be shown that: idealized spherical pendulum:
Iaqr — Ligr p , Lm
QANIQ = | Lpr—Lpr | withQ=1 ¢ Tey$) = —I—gégRTeg (9)
0 r !

Introducing this relation in the expression of the angulag0 stgdy the ;tab|||ty of this dynamics, define a Lyapunov
unction candidate’

moment derivative equation, and considering only the yaw
rate,r’ ion, it comes: 1 Lim
ate,r”, equation, it comes v=larr, In,0 4 L7 I‘l g(1—c§RTes)  (10)
L =T, (6)
2This is due to the fact that the the matfiRY is of rank two with
1The notationz;, denotes the skew symmetric matrix of vectgr entries only in the first and second columns and Rag € Ker(X).



corresponding to the total energy of a pendulum of length  surfaces. For this kind of sit-on-tail VTOL this ratio

ﬁ. DifferentiatingV, it yields: is usually weak £ << 1). Therefore, the approach
) ] taken in our control algorithm, consists in designing

V=0if L <0, a robust controller for the system without considering
Lm o . the perturbation term and analyze the robustness of

= 2"—g0Té3R es if L > 0. . .

I e e ~ the closed loop with respect to the perturbation term.
Depending on the sign of, the zero dynamics have For the sake of clarity of the presentation, we address
different qualitative behaviour. Fol. < 0, the input- the robustness problem by analyzing some simulation
output system is weekly non-minimum phase (the zero results and leave further discussion on dynamic pertur-

dynamics are marginally stable). Note, however, that 0 bation in a further publication.

corresponds to an idealized inverted spherical pendulum.* USing the expression of (see (II-D)), ORT Feat
It follows from classical Lyapunov theory and the above  €an be written ase%R” Foyy, i€, ase is a scalar:
discussion that the system is strictly non-minimum phase. %R eFeu. At this stage, the unknown vectar..,

The first contribution of the paper is to show that, ~ Nomogeneous to a moment, is defined as follows:
deporting the control point away from the center of masse Moyt = eFeas
of the vehicle, in the opposite direction to the mobileFinally, both unknown vectors,,; and M,,, are taken
surfaces location, can lead to cancel the zero dynami@sto account in the control desigThose considerations
effects inherent in the system. More precisely, dgt be  being assumed, the model used for the control design is

the new control point: the following one:
— .
o =¢+GD, (11) &b Up
. , . : ) —uR + Fe,
Then, if G_D> is a translation vector along the, axis m;éD = szfl o8 + mges ‘ (14)

defined by: 10 T+ 5RT M.,

SN . I

GD =dz, with d= *mflL, (12)  The backstepping technique is used to design a control law

. which adapts to incertaintieg,,; and M.
The dynamics of system (5) becomes: P K K

&b =wp Step 1. Let & be a constant desired position for the
mup = —uRes + mges + (Isxs — mdReI ' oRT) Feut control pointD. Defined; = £p — &, as the error between
R =RQ the actual and desired position of the control paihtof
IO = Tait + R Feu the MAV. The control law must ensure the convergence of
. (13)  the errord, towards zero. Therefore, defitg as a storage
where the zero dynamics do not appear any more and: function associated with the error ter:
§p =&+ dRes 1.7
vp = v+ dRSes S1=350101

. 2 2
= u+md(p* +q°) Differentiating Sy, it yields:

In the next section, the above system will be used to & §T§
develop the control design for the stabilization task in 1=%%
presence of perturbation forces (constant gusts). Introducing a gaink; > 0, recalling equation (14) and

IV. CONTROL DESIGN differentiatingd, it yields:

In our modeling, there are coarsely two sources of 01 =E&p =wp = —k181 + k181 +vp
incertainty : the components of aerodynamic forces applied ps

m

to the body, and the point of application of those efforts.

More precisely, in model (13)..; ando are unknown. The Consequently, at the end of the first step of backstepping,

main difficulties comes from the termdRe;I-1oRT in it comes :

the tranlational dynamics and the bilinear forRT F.. Si = —ki|6u + L1675

in the moment equations. Bo_th difficulties can be overcome 51 = —ki6 + 15,

with the following considerations: )
« As |R| =1 and| %] = 1, the magnitude of the per- Step 2. o2 has been introduced, in the expressiorof

turbating termmdRe;I-1oR” is strongly dependent as the difference between the real velocity béind a virtual

on the ratioT—dHaH — 7%(15_ Taking into account the control which would lead to an exponential convergence of
expression ofl given by1(12), this ratio is equivalent 91, Whend, = 0. To stabilize the system, the convergence of

c - .
to 7 € Fhe ratio between the lever arm of the Skeep in mind that\..; does not represent the aerodynamic moment.
aerodynamic forces and the lever arm of the contratl is only a vector colinear td=...;

(15)



d2 must be ensured. In the expression of the time derivativdsing the expression df, given by (18), it can be deducted

02, the unknown vectorF,,; appears via the translation

dynamics. This unknown vector will be estimated in the.

control law by F,,,. The convergence of the errdr.,,

that:

S3 = —]{?1|(51|2—k2‘52|2—6563+ﬁ‘£t(7’1—F;lﬁ‘em)‘i‘ég(;g

between the real aerodynamic forces and the estimated oRggy, §5 given by:
shall be ensured too. Therefore, a second Lyapunov function

Ss is defined as follows:
1 1~ -
Sy =S + 55552 + iFethFglFext

wheredy = mup + mki8; and F.yp = Foyr — Fuye. In the

expression ofSy, ' is a scalar gain which tunes up the

dynamics of the adaption of.,;. Using the expression of
S1 given by (15), it comes:
. 1 . ~ 2
Sy = —k1|01|* + =81 69 + 03 02 — FL T Foy
m

Introducing the gairk, > 0, the time derivative), is given
by:

5o mki61 + mip
—mk26) + k162 — WRe3 + mges + Fent
7mk%51 7]6252 +~(k‘1 + k2)d2 — uRes
+m963 + Fezt + Fezt

(16)

Using (16) in the expression ¢f, and gathering the terrhs
6165 and F.,;, it comes:

Sy —k1|01|* — k2 0a]? + (5, — mki)o{ 6y
+083 (k1 + ko)d2 — wRes + mges + Fopt)

+Fy (02 = T Fe)

At this stage, let us introduce:

{

Then it can be shown thaf, exresses as:

T1 = 02
o = (% —mk})61 + (ki + k2)d2 + mges + Feyy
1

So = —k1|61|* —ka|62]*+63 (a1 — GRes) +Fi(11—Tf" Fegt)
D
—33

If —uRes was a control vector, the adaptive filter and
the control law«; would cancel the influence of,;
and guarantee the non positivity 6%. However, if @ is
really a control input, the orientation of the thruBe; is
not. Therefore, the differencé; between the real thrust
uRes and the virtual thrusty; is introduced. Convergence

of 3 must be ensured. At the end of the second step of

backstepping, it comes:

—k1‘(51‘2 — k2|(52|2 — 5;(53 —+ Fg;t(Tl — F;lﬁezt)

—L61 — koba — b3 + Fea

3
02

(18)

Step 3. Let us introduce now the third Lyapunov func-
tion S3 :

S3 =55 + %5{53 with 03 = aResz — o

53 = YLLR€3 + ﬂReg — a1 = ﬁReg + ﬂRQeg —

Expressions of; andd, given by (15) and (18) respectively
lead to the following formulation o, :

1

T mk%)él + (kl + k2)52 + Fezt

(
+(k1 + ko) (=261 — kady — 65 + Fext) + Femt

m

& =

Introducing :

Ki = —k(Z-mk?) -
Ky = L k2 —kiko — k3

Final expression of; is given as follows:

O3 =

ﬁR@g + ﬂRQeg — K161 — K569

(k1 4 k2)03 — Fopr — (k1 + ko) Fout
Reporting this expression ifis, it comes:
Sg = fk1|51|2 — k2|52|2 - 5553 + (k1 + k2)|53]2
+5g(ﬂ7€63 + TLRQG:; — K101 *.K252 - szf)
+FL (11— (b + k)35 — T Fur)

Introducing the gairks > 0, the following functions are
defined:

Ty = 11— (k1 + k2)d3
Qg = K151+(1+K2)52—(k1+k2+k3)53+FFTQ
' (29)
It can be easily verified that; expresses as:
Sy = —k1]01[* — k2| 02]? — k3|d3]? .
+ngt(7-2 - Fg‘lﬁeuxt) + 6??(FFT2 - Fewt)
—5—53T (@R63 + uRQes — 042)
O4
The explicit form ofiRes + aRes is given by:
o aq
iiRes + WRQes =R | —up (20)

u

Therefore, if the roll rate and the pitch rate were control

inputs, the adaptive filter, and the control law om, ¢ et

4 defined by :

uq
—ap

u

T
=R (6]

would ensure the non-positivity 5. However,( is still

4Let us recall that, terms in Lyapunov functions being scalar, it comeBOt @ control input, and a new gajp between the virtual

0T Fegy = FX 62

control a, and the real vectofiRes; + wR<es has to be



defined. At the end of the third step of the backstepping,
comes:

Sz = —ki|61]* — ka|0a|? — ks|ds|* + 6564
+FL (12 — Fl_?‘lFea:t) + 0T (Cpre — Foxt) .

03 = 05— k3ds + 04 — (k1 + ko) Fogy + Dp7a — Fryy
(21)
Step4. In the expression of the time derivativi,

it Finally, isolating the estimation errofs.,; and M., the
following expression ob, is obtained:
54 = ﬁReg — ﬂRé:;Ilem'l
—u(p? + ¢*)Rez + 2iiRQez — uRE T LHRT M,y
~G10y — Gaby — G303 — G5 (Fugy — Tpra — 64)
—ﬂRé;gI_lébRTMemt — GuF.pt
(22)

appears the angular velocity dynamics, perturbated by theln equation (22), the terms are arranged in such way that:

second unknown parameté(..;. In the control law, this

the first line is the control vector input, the second and

term will be estimated by/,;. To ensure the convergencethird lines gather “measurable” terms (internal states of the

of the estimation erroi/.,,, the following Lyapunov func-
tion S, is defined:

1 1 -~ 4~
Sy = S3+ 552 4+ EMZmFMle

with §, = uRes + ﬁRQeg — s and Mewt = Moyt — Mewt

I'r is a scalar gain which tunes up the dynamics of the

adaption ofM,,; . It can be deducted that:
Su = 85 + 0T84 — ML, 7 Moo
whered, is given by:
bo= iiRes + 2iR0es + uRN2es + TR Qes — o
Noticing that:

- —q qp 0 0 .
RQ%e3 =R | gqp —p* 0 0] =—("+q¢")Res
0 0 —(*+4*

Thend, expresses &s

o= [ii—a(p® + ¢)| Res + 2iR ez — UREQ — do
= [i—a(®+¢*)|Res + 2uRes
—UREI ™ (Tyir + HRT Meoyt) — cio

Expressingr, with respect ta), andds (see (17) and (19)),
the time derivativev, can be written as follows:

o = Kib + (1+ K2)52 - (k1 + ka2 + k3)53
+FF(52 — (kl + k‘g)53)
= Kioi+ 1+ Ko+Tg) )
—((k1 +k2)(1 +Tp) + k3)d3

Reporting inc- the expression of;, i = 1..3 given by
(15), (18) and (21) respectively, and gathering the terms,
can be shown that:

dg = G101+ G200+ G303+ Gy Frpi+Gs(Fopy —Tpa—04)

with
Gi = —hK —LX(Ky+1+Tp)
Gy = & k(Ky+1+4Tp)—Gs)
Gy = —(K2+1+FF)+G5]€3
Gy = Ky+1+4Trp+Gs(ks+ ko)
Gs = (k1+k)(14+Tp)+ks

5Recall that for any vectot, v: tiv = u X v = —v X u = —du

system and estimations of the unknown vectors) which can
be integrated directly in a control law, and the last line
contains the estimation errors of the unknown parameters.
At this stage, introducing, > 0, the following functions
are defined:
73 = To— Gyl
as = 03+ (ks + G5)ds — u(p® + ¢*)Res
+2aROes — uREI 15 RT Moyy
—G101 — G2y — G303 — G5T'p (13 — 72)
(23)
Furthermore, the explicit form of the vectaiRes; —
aResI 1T, is given by:
7 Lm
iRe3 —uREI Ty =R Y

The components of this vector are clearly control inputs
of the system. Introducing the function, that will be
identified later, the control law is given by the following
expression which is well defined so long as the thrust
does not vanish:

- | = RT(—as +v) (24)

Using this control law,S, expresses as:
Si = —ka[61|? — ka|0? — kalds|? — kalda?
+(SZV =+ G5(SZ(F1.7T3 — Fe:};t) + 6;(1_‘1:7'2 — Fewt)
+F£t(7-3 - Fglﬁezt) .
—MZ, [(aREI HRT) 6y + Dyf Moy

At this stage, adaptive filters are chosen to cancel the action
6tf F..; and M., in the expression ob:

}j‘ext = I'pm3 (25)
M., = —F]\4(aRé3I_15bRT)T54
Assuming this choice of adaptive filters, the following
expression of5; can be deduced:
Si = —ki0[* = k2|8a|* — ks|63]* — ka0a]?
+5ZV + 5§FF(T2 — 7'3)
Using (23), it is clear that:

T2 — T3 = G404



To ensure the non positivity &4, v is naturally defined as
follows:

V= 7G4FF63 (26)

V. SIMULATION RESULTS

Simulations were performed on the base of model (13),
including the perturbating termndResI~1oRT neglected
in the control design. The figure 4 shows the evolution

At the end of backstepping process, an adaptive contref vehicle's.position.and atti_tgde QUring the stabilization
Lyapunov function has been built, and its time derivative i¢owards a fixed desired position, in presence of constant

non-positive:
Sy = —ky|61]% — ka|0a|? — k3|d5]% — ky|d4)? (27)

To achieve the control design, the control |&y defined

wind gusts. On-line estimation of the unknown parameters
is also shown: the graph of,,; with respect to time
represents the evolution df.,, components (dashed line)
and the corresponding vector obtained from the orientation
dynamicséMm (solid line). Due to the perturbating term,

by equation (6), which ensures the stabilization of the yathe relation £,,, = %Memt is lost. However, the adap-
rate dynamics, must be added. Let us introduce the ultimatige controller succeeds in reaching the desired position.

Lyapunov functionSs :
1
Sy =S4+ 57‘2
Using (27), and (6), the derivativé; expresses as follows:

S5 = —k‘1|61|2 — k‘2|(52‘2 — k3‘53|2 — ]4;4|54|2 +7r

I'n
I
and can be finally written:

55 = 7k1‘61|2 — k2|52|2 — k3|53‘2 — k4|54|2 — ]{157’2 (28)

Theorem 1:The system (14) is globally adaptively sta-
bilizable by the control law given by (24) and by the

Figure 5 shows the vehicle flying behaviour when the on-
line estimation of unknown parameters is deactivated: the
vehicle is drifted away by crosswinds, and get stabilized to
an equilibrium point deported from the expected position.

5

&

X(-), y(—), ()
»

o

yaw moment control law defined by (7). Moreover, the
adaptive filters chosen in (25) ensure the convergence of
the estimated unknown vectors to their real value. More
precisely,

00— (o)

AfD — &
Fezt — Fezt . . . . . .
Mex ;. — 0 Fig. 4. Flying behaviour of the UAV in crosswind with the adaptive
ro— 0 controller

Proof. Equation (28) implies that;, do d3, 4, 7 and
their successive time-derivative converge to zero.jf
tends to zero, thegp tends toé,. In the same way, the
convergence ofi; to zero means the convergence «gf
to zero. The expression d@k given by (18) implies that
Flyt goes to zero, too. The convergencedgindicates that
the thrust direction is tilted to counteract the aerodynamic
forces:uRes — mges + F.,;. The controller will adapt
the thrust intensity in order to maintain the lifti (—
|mges + Feat||)- The expression of, given by (19) shows
thatuRes +ﬂRQeg tends to zero. It means (cf. the explicit
form of this vector given by (20)) thd® converges to zero,
asw does. Finally, taking into account the control law given
by (24), 5, expresses as:

04

— with adaptive contral

— - without adaptive control

Fig. 5. Stabilization of the vehicle’s position with and without
on-line estimation of unknown parameters: starting positii);
desired final positior(1, 2).

—(1+ D pGa)ds — kady — GaFrgy
—(CpaRET5HRT) My

Its convergence naturally implies the convergencébf,
to zero.d



VI. CONCLUDING REMARKS [13]

In this draft, we have proposed a simple model for
the dynamics of a VTOL Micro Aerial Vehicle proto-
type that includes certain important aerodynamics effects.
The unknown aerodynamical efforts are considered to be
constant (or quasi-constant). An adaptive control design
allowing the stabilization of the MAV to a given position
is proposed. A theorem is given proving the convergence
of the estimation errors to zero and simulation results are
provided to illustrate the proposed concept.

In a further work, a modification of the proposed design
will be undertaken to improve robustness of the closed loop
design with respect to the ignored term and fluctuation in
the aerodynamical efforts. To improve robustness of the
adaptation process and to insure practical stability of MAV
in a small compact domain around the desired position,
we will add an additionab-modification to the estimator
dynamics.
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