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Abstract: This paper describes the dynamics of an Unmanned Aerial Vehicle
(UAV) for monitoring of structures and maintenance of bridges. It presents a
novel control law based on computer vision for quasi-stationary flights above a
planar target. The first part of the UAV’s mission is the navigation from an initial
position to a final position in an unknown 3D environment. The new control law
uses the homography matrix computed from the information coming from the
vision system. It will be derived with backstepping techniques. In order to keep
the target in the camera’s field of view, the control law uses saturation functions
for bounding the UAV orientation and limiting it to very small values.
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1. INTRODUCTION

In the past few years, a great interest in unmanned
aerial vehicles has risen in military applications as
well as civil applications. Their highly coupled dy-
namics and their small size provide a test ground
for complex control theories and autonomous nav-
igation.

In LCPC-Paris, we have recently started a project
called PMI (Instrumentation Plate-Form) which is
a UAV capable of quasi-stationary flights whose
mission is the inspection of bridges and local-
ization of defects and cracks. All bridges must
be inspected in details every 4 to 5 years. With
flying vehicles, inspection will be more secure and
less expensive by reducing the number of workers,
avoiding the use of footbridges (figure 1) and not
obstructing the circulation traffic.

Almost all control theories for UAV’s are built
around a vision system, using visual servoing as a

Fig. 1. Footbridge for crack’s inspection

control method (Hamel and Mahony, 2000; Shell
and Dickmanns, 1994). A typical vision system
will include an off-the-shelf camera, an Inertial
Navigation System (INS) and in some cases a
Global Positioning System (GPS).

How should the information from vision sensors
be used for robotic control purposes? There exists
three different methods of Visual Servoing: 3D, 2D
and 2 1

2D. 3D Visual Servoing lead to a cartesian
motion planning problem. Its main drawback is
the need of a perfect knowledge of the target



geometric model. The second class known as 2D
Visual Servoing aims to control the dynamics of
features in the image plane directly (Hutchinson
et al., 1996). Classical 2D methods suffer from
the high coupling dynamics between translation
and rotational motion which makes the cartesian
trajectory uncontrollable. In this paper we use
a third method presented in (Malis, 1998) (2 1

2D
Visual Servoing) that consists of combining visual
features obtained directly from the image, and
features expressed in the Euclidean space. More
precisely, a homography matrix is estimated from
the planar feature points extracted from the two
images (corresponding to the current and desired
poses). From the homography matrix, we will
estimate the relative position of the two views.

In this paper, we consider a general mechani-
cal model of a flying robot capable of quasi-
stationary maneuvers. Then we derive a con-
trol law from classical backstepping techniques
(Hamel and Mahony, 2000) of autonomous hov-
ering systems based on separating the transla-
tional from the rotational rigid body (airframe)
dynamics. A novel approach is also presented, it
will limit the orientation of the UAV. Limiting the
orientation will ensure that the object will remain
in the camera’s field of view. We will prove the
stability of such a strategy based on saturation
functions. Lastly, we present simulation results of
the new control law.

2. A GENERAL UAV DYNAMIC MODEL

To derive a general dynamic model for a UAV is
not an easy task because each model has its own
capabilities and aerodynamical properties. In this
section, we will derive mechanical equations for
UAV’s in hover or quasi-stationary conditions.

Let F ∗ = {Ex, Ey, Ez} denote a right-hand in-
ertial or world frame such that Ez denotes the
vertical direction downwards into the earth. Let
ξ = (x, y, z) denote the position of the centre of
mass of the object in the frame F ∗ relative to a
fixed origin in F ∗. Let F = {Ea

1 , Ea
2 , Ea

3} be a
(right-hand) body fixed frame for the airframe.
The orientation of the airframe is given by a
rotation R : F → F ∗, where R ∈ SO(3) is an
orthogonal rotation matrix.

Let V ∈ F denote the linear velocity and Ω ∈ F
denote the angular velocity of the airframe both
expressed in the body fixed frame. Let m denote
the mass of the rigid object and let I ∈ <3×3

be the constant inertia matrix around the centre
of mass (expressed in the body fixed frame F ).
Newton’s equations of motion yield the following
dynamic model for the motion of a rigid object:

ξ̇ = RV (1)

mV̇ = −mΩ× V + F (2)

Ṙ = Rsk(Ω), (3)

IΩ̇ = −Ω× IΩ + Γ. (4)

where F is the vector forces and Γ is the vector
torques.The notation sk(Ω) denotes the skew-
symmetric matrix such that sk(Ω)v = Ω × v for
the vector cross-product × and any vector v ∈ <3.
The vector force F is defined as follows :

F = mgRT e3 − ue3

In the above notation, g is the acceleration due to
gravity, and u represents the thrust magnitude.

3. CAMERA MODELING AND VISUAL
SERVOING METHOD

In this section we will present a brief discussion of
the camera projection model and then introduce
the homography to use the 2 1

2D Visual Servoing
method.

3.1 Projection Model and Planar Homography

Visual data is obtained via a projection of real
world images onto the camera image surface.
The pose of the camera determines a rigid body
transformation from the world or inertial frame
F ∗ to the camera fixed frame F (and vice-versa).
One has

P ∗ = RP + ξ (5)

as a relation between the coordinates of the same
point in body fixed frame (P ∈ F ) and in the
world frame (P ∗ ∈ F ∗).

Let p is the image of the point P ∗ and p∗ is the
image of the same point viewed when the camera
is aligned with frame F ∗ (see fig.2). When all
target points lie in a single planar surface one has
1

pi
∼=

(
RT +

tn∗T

d∗

)
p∗i , i = 1, . . . , k, (6)

where t = −RT ξ. n and n∗ are the unit vec-
tors normal to respectively the actual and desired
image planes. The distance between the object
and the desired plane is d∗. The projective map-
ping H :=

(
RT + tn∗T

d∗

)
is called a homography

matrix, it relates the images of points on a tar-
get plane when viewed from two different poses
(defined by the coordinate systems F and F ∗).

1 Most statements in projective geometry involve equality
up to a multiplicative constant denoted ∼=.



More details on the homography matrix could
be found in (Malis, 1998). The homography ma-
trix contains the pose information (R, ξ) of the
camera whose extraction can be quite complex
(Malis, 1998; Zhang and Hanson, 1995; Weng et
al., 1992). However, one quantity r = d

d∗ (the ratio
between actual distance to object d and desired
distance d∗) can be calculated easily and directly:

r = det(H) = det(RT +
tn∗T

d∗
) = 1 +

nT t

d∗
.

Fig. 2. Camera projection diagram showing the
desired (F ∗) and the current (F ) frames

3.2 Visual Servoing Control Strategy

To simplify the derivation, it is assumed that the
camera fixed frame coincides with the body fixed
frame F.

Let P ′ denote the observed point of reference of
the planar target, and P ∗ be the representation
of P ′ in the camera fixed frame at the desired
position (Figure 2). The visual servoing problem
considered is:

Find a smooth force feedback u depending only
on the measurable states (the observed point p,the
homography matrix H, the translational and an-
gular velocities (V, Ω), and the estimated parame-
ters (R,r) from the homography matrix (H) which
provide a partial pose estimation), such that the
following error

(ε = R(P −RT P ∗), σ = φ− φd)

is asymptotically stable.

The angles φ and φd represent respectively the ac-
tual and the desired yaw angles. The relationship
between the Euler angles and the rotation matrix
is 2 :

2 The following shorthand notation for trigonometric func-
tion is used:

cβ := cos(β), sβ := sin(β), tβ := tan(β).

R =




cθcφ sψsθcφ − cψsφ cψsθcφ + sψsφ

cθsφ sψsθsφ + cψcφ cψsθsφ − sψcφ

−sθ sψcθ cψcθ


 .

(7)

Note that the two error terms (ε and σ) are not
defined in terms of visual information.

Following (Malis, 1998), the camera can be con-
trolled in the image space and in the Cartesian
space at the same time. They propose the use
of three independent visual features, such as the
image coordinates of the target point associated
with the ratio r delivered by determinant of the
homography matrix. Consequently, let us consider
the reference point P ′ lying in the reference plan π
and define the scaled cartesian coordinates using
visual information as follow:

Pr =
n∗

T

p∗

nT p
rp

Knowing that

||P ||
||P ∗|| =

n∗
T

p∗

nT p
r,

it follows that we can reformulate the error ε in
terms of available information, so let us define

ε1 = R

(
n∗

T

p∗

nT p
rp−RT p∗

)
(8)

From the above discussion and equations describ-
ing the system dynamics, the full dynamics of the
error ε1 may be rewritten as

ε̇1 = ρv (9)
mv̇ = −uRe3 + mge3 (10)

Ṙ = Rsk(Ω) (11)

IΩ̇ = −Ω× IΩ + Γ (12)

where ρ = 1
||P∗|| < 1 3 is an unknown and non

identifiable parameter (see Appendix 1 for the
identifiability test of the parameter ρ). To avoid
the problem of the unknown parameter ρ, we will
present a control strategy based on separating
the translational dynamics from the rotational
dynamics leading to time scale separation between
the attitude and linear dynamics.

Define
δ := ε1 + v (13)

Let S1 be the first storage function for the back-
stepping procedure. It is chosen for the full linear
dynamics Eqn’s 9-10

S1 =
1
2
||δ||2 +

1
2
||v||2 (14)

3 The distance P ∗ must be greater than 1 which is the
focal length of the camera.



Taking the time derivative of S1 and substituting
for Eq. 9 and 10 yields

d

dt
S1 = ρδT v + (δ + v)T (mge3 − uRe3) (15)

Applying classical backstepping one would assign
a virtual vectorial control for 1

m (uRe3)d

u(Re3)d := mge3 + mv + mδ (16)

This choice is sufficient to stabilize S1 if the
term u(Re3)d were available as a control input.
If uRe3=u(Re3)d then

Ṡ1 = −||δ||2 − (2− ρ)δT v − ||v||2

is negative definite ∀ρ < 1.

Note that the vectorial input can be split into its
magnitude u, and its virtual (or desired) direction
Rde3, that defines two degrees of freedom in the
airframe attitude dynamics (Eqn’s 11-12):

|u| = ||mge3 + mv + mδ||
and the desired direction

Rde3 =
mge3 + mv + δ

|u| (17)

Note that the full orientation matrix Rd is ob-
tained by solving (ψ, θ, φ) using Eq. 7 subject to
the constraint given by the specification of φd. The
desired direction vector Rde3 in equation 17 is not
subject to any restrictions. In the next section, the
orientation will be limited to small values of Euler
angles.

4. LIMITING THE UAV ORIENTATION

In the theoretical developments based on the
backstepping (Hamel and Mahony, 2000), the pro-
posed law of control assures an exponential con-
vergence towards the desired position. It seems
to us, however, that this type of convergence is
not recommended when the vehicle is initially far
from the desired position. Indeed, the dynamic
model based on quasi-stationary conditions (hov-
ering conditions) is not valid anymore, because
the dynamics of such a convergence will provoke
a different flight mode. Moreover, the target image
may leave the field of view of the camera during
the evolution of the vehicle. To avoid such situa-
tions, it is necessary to insure that the focal axis of
the camera is close to the gravity direction. In the
sequel, we propose to use small gains technique
(for example the technique of saturation functions
presented by Teel in (Teel, 1992)). This technique
seems well adapted to our problem. Indeed, if the
orientation is saturated, we can insure that the
robot will remain in quasi-stationary manoeuvres
during all the operation.

The orientation Rde3 is a function of the terms v
and δ. In order to limit the orientation, we add a
saturation on the two terms v and δ. Therefore,
Eq. 16 becomes

uRde3 = mge3 + m Sat2(v + Sat1(δ)) (18)

where Sat(x) is a continuous, nondecreasing satu-
ration function satisfying:

• xTSati(x) > 0 for all x 6= 0.
• Sati(x) = x when the components of the

vector x are smaller than Li (|x(.)| ≤ Li.
• |Sati(x)| ≤ Mi for all x ∈ IR .

Proposition 4.1. The following choice of the satu-
ration functions (Teel, 1992)

Mi <
1
2
Li+1;

1− ρ

2
Li+1 ≤ Li ≤ Mi

ensures global stabilization of the linear dynamics
when equation 18 is used as control input of the
translational dynamics

Proof Recalling Eq. 10 and Eq. 18, it yields

v̇ = −Sat2(v + Sat1(δ))

Consider the storage function Sv = 1
2 ||v||2. The

derivative of Sv is given by

Ṡv = −vTSat2(v + Sat1(δ))

Using conditions on Sati coupled with the fact
that M1 ≤ L2, it follows that Ṡv < 0 (∀|v(.)| ≥
1
2L2) (v(.) represents a component of the vector
v). Consequently, it exist a finite time T1 after
which all components of the linear velocity vector
v(.) ≤ 1

2L2 (∀t ≥ T1). The control law Eq. 18
becomes then

u4Rde3 = mge3 + m(v + Sat1(δ)), ∀t ≥ T1

Now consider the evolution of the term δ for
t ≥ T1. Let Sδ the storage function associated with
the term δ (Sδ = 1

2 ||δ||2). Deriving Sδ it yields

Ṡδ = δT ((ρ− 1)v − Sat1(δ))

Using the second condition of the proposition, one
can observe that the components of the vector δ
become smaller than M1 after a finite time T2.
After T2, the control law becomes

uRde3 = mge3 + m(v + δ), ∀t ≥ T2

insuring exponential stability after the time T2.
4

Using the saturated control law (Eq.18), the
derivative of the first storage function becomes

Ṡ1 = −||δ||2 − (2− ρ)δT v − ||v||2
− (δ + v)T |u|s(R̃− I)Rde3

where

R̃ = RRT
d ; and |u|s = ||mge3+m Sat2(v+Sat1(δ))||



According to the above proposition, the system
with such a saturated input is globally asymptot-
ically stable if the new error term R̃− I converges
to zero. Now, it only remains to control the atti-
tude dynamics involving the error R̃− I.

5. ATTITUDE DYNAMICS CONTROL

The next step of the control design involves the
control of the attitude dynamics such that the er-
ror R̃− I converges exponentially to zero. We will
use a quaternion representation of the rotation to
obtain a smooth control for R̃. The attitude devia-
tion R̃ is parameterized by a rotation γ̃ around the
unit vector k̃. Using Rodrigues’ formula (Murray
et al., 1994) one has

R̃ = I + sin(γ̃)sk(k̃) + (1− cos(γ̃))sk(k̃)2

The quaternion representation describing the de-
viation R̃ is given by (Murray et al., 1994)

η̃ := sin
γ̃

2
k̃, η̃0 := cos

γ̃

2
; with ||η̃||2+η̃2

0 = 1

The deviation matrix R̃ is then defined as follows

R̃ = (η̃2
0 − ||η̃||2)I + 2η̃η̃T + 2η̃0sk(η̃) (19)

The attitude control objective is achieved when
R̃ = I. From Eqn 19 this is equivalent to η = 0
and η̃0 = 1. Indeed, it may be verified that

||R̃− I||F =
√

tr((R− I)T (R̃− I)) = 2
√

2||η̃||
(20)

Based on this result, the attitude control objective
is to drive η̃ to zero. Differentiating (η, η0) yields

˙̃η =
1
2
(η̃0I + sk(η̃))Ω̃, ˙̃η0 = −1

2
η̃T Ω̃ (21)

where Ω̃ denotes the error angular velocity

Ω̃ = Rd(Ω− Ωd) (22)

and Ωd represents the desired angular velocity.
In order to find the desired angular velocity, we
have to consider the time derivative of the desired
orientation Rde3

Ṙd = Rdsk(Ωd); Ṙde3 = Rde3sk(Ωd) (23)

Since differentiating the direction Rde3 involves
the use of the unknown parameter ρ which is non
identifiable (see Appendix 1), we will design a
control law with a high gain virtual control Ω̃v.
In this way we can neglect the effect of the time
derivative of Rde3.

Then, by choosing the virtual control as

Ω̃v ≈ Ωv = −2kη̃0η̃

with parameter k chosen high enough to neglect
Ωd. Let

ν =
1
k

Ω + RT
d η̃0η̃ (24)

After tedious calculations, we obtain the time
derivative of ν

ν̇ = −k

2
η̃0R

T
d η̃ − k

2
η̃2
0ν (25)

Let us define the Lyapunov function candidate for
the attitude deviation :

S2 =
1
2
||η̃||2 +

1
2
||ν||2. (26)

Taking the time derivative of S2 and using (25),
we obtain

Ṡ2 = −k

2
η̃2
0 ||η̃||2 −

k

2
η̃2
0 ||ν̃||2 (27)

This completes the control design for the attitude
dynamics, since the time derivative of the storage
function in (27) is definite negative. Then the
input of the new control law (eq. 18) limiting the
orientation ensures the exponential stability of the
orientation dynamics and asymptotic stability of
the linear dynamics.

6. SIMULATION RESULTS

In order to evaluate the efficacy of the proposed
servoing technique with orientation limits, simu-
lation results for a hovering robot are presented.
The experiment considers a basic stabilization
mission. The target is composed from five points:
four on the vertices of a planar square and one
on its center. The available signals are the pixel
coordinates of the five points observed by the
camera.

The parameters used for the dynamic model
are m = 0.6, I = diag[0.4, 0.4, 0.6] and g =
10. Initially, the robot is assumed to hover at
(10, 15,−12).It is assumed that the plane is per-
pendicular to the line of sight (i. e. the unit vector
normal to the target plane is equal to the direction
of the gravity n∗ = e3)

We will compare the results of the new control law
(with orientation limits) versus the evolution of
the states in the control law (without orientation
limits) developed in (D.Suter et al., 2002). One
can notice (Figure 3) that the time of convergence
for the states following the new law of control
is longer than the previous law, but instead we
see that the variation of the Euler angles are
restricted to small values (in this case, in the order
of 10−3rad).

7. CONCLUSION

In this paper we presented a new control law
based on previous work of (D.Suter et al., 2002).
Our new contribution is limiting the robot ori-
entation to ensure small values of Euler angles,



Fig. 3. Evolution of the system states (the 3 Euler
Angles [radian] and the 3 coordinates [meter])
in the 2 control laws: without limiting its ori-
entation (Dashed Lines-Angles in 10−1rad),
and the new control law (Full Lines-Angles
in 10−3rad)

therefore the dynamics of the flying vehicle will be
always applicable to the hover conditions (quasi-
stationary manoeuvres) and the object will re-
main at all time in the field of view of the camera.
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APPENDIX 1 : TEST FOR THE
IDENTIFIABILITY OF ρ

In this appendix, we will apply the conditions
given by (Lecourtier and Lamnabhi-Lagarrigue,
1987) to test the identifiability of the parameter
ρ. The test is known as the generating series test,
it is based on power series associated with the
system. Rewriting the system Eqn’s 9-12 using the
following notation x1 = ε1, x2 = v, x3 = R, and
x4 = Ω:

ẋ = f0(x, ρ) + f1(x, ρ)u + f2(x, ρ)Γ (28)

where

f0 =




0 ρx2 0 0
0 0 0 0
0 0 x3sk(x4) 0
0 0 0 −I−1x4 × Ix4




f1 =




0

− 1
m

ux3e3

0
0


 f2 =




0
0
0

I−1




To simplify the test, we eliminate the term ge3

from the equation. This elimination wont alter in
any way the result of this test. Let us consider the
vector fields associated with the last system:

F0(x, ρ)[.] = ρx2
∂

∂x1
+ [x3sk(x4)]

∂

∂x3

− [I−1x4 × Ix4]
∂

∂x4

F1(x)[.] =
1
m

x3e3
∂

∂x2

F2(x)[.] = I−1 ∂

∂x4

Then we compute the Lie derivatives of any out-
put function y and evaluate it at x = x∗ where
x1 = x2 = x4 = 0, x3 = I: F1(F0(x∗, ρ)[y]),
F2(F0(x∗, ρ)[y]), F2(F0(F0(x∗, ρ)[y])). The param-
eter will be identifiable if the system has a unique
solution for ρ. In our case, the Lie derivatives all
vanish at x = x∗ so the system is structurally non
identifiable.


