

Rama Chellappa Dept. of Electrical and Computer Engineering and Center for Automation Research University of Maryland

Supported by ARO MURI

Applications -1

- Instantaneous situational awareness
- Scene Interpretation
 - Terrain segmentation and classification
 - · Where is the lake?
 - Terrain modeling, map updating and path planning
 - Can vehicles go through the terrain?
 - · Video measurements
 - How tall is the building?
 - Damage assessment

Applications - 2

- Dynamic interpretation
 - Is anything moving in the scene?
 - Humans, vehicles, animals?
 - Combatants/non-combatants?
 - · Civilians/insurgents/military
 - How many?
 - · Counting
 - What are they up to?
 - Activity modeling and recognition

UMD's Involvements

- Early Nineties
 - RSTA for UGVs (DARPA)
- Mid Nineties
 - Visual Surveillance and Monitoring (VSAM) effort (DARPA)
- Late Nineties
 - Airborne Visual Surveillance (AVS) effort (DARPA)
- Recent Years
 - FedLab, CTA efforts (ARL)
 - Video Verification and Identification (VIVID) effort (DARPA)
 - MURI on MAVs (ARO)

- No texture over a large portion of the image
- Large inter-frame displacements
- Low-resolution and poor-quality video
- Limited onboard processing capability
- Low signal to noise ratio
 - Tons of data Unreliable/unsynchronized/unava ilable meta data.
 - Absence of compound eyes
 Unable to do insect-style
 processing

•

Ongoing Work - 1

- MAV Video Stabilization
 - Earlier efforts focused on optic flow and discrete features.
 - Recent efforts have looked at the horizon,

features at infinity and close by.

- From distant points and horizon get the full rotation vector.
 - Refine rotation and estimate translation using close by features.

UAV Stabilization

Persistent tracking in a PREDATOR-generated mosaic built using 2200 frames. The red tags indicate tracking the same convoy of vehicles on the mosaic.

- Persistent tracking and verification of targets
 - Appearance/feature graph based
 - Maximize the probability of the target appearance given the video
 - Temporal integration of tracking and ID parameters
 - Funded by ARL/Collaborative Tech. Alliance on Advanced
 - Sensors

- Stochastic appearance tracking is a stochastic process for modeling inter-frame motion and appearance changes
 - Video frame { *Y*₁, *Y*₂, ..., *Y*_t, ... }
 - Motion parameter { $q_1, q_2, ..., q_t, ...$ }
 - State equation (motion model): $q_t = F_t(q_{t-1}, U_t)$
 - Observation equation (model): $Y_t = G_t(q_t, V_t)$

- Statistical inference
 - Computing the posterior probability $p(q_t|Y_{1:t})$
- Particle filters (PF)
 - PF approximates $p(q_t/Y_{1:t})$ using a set of weighted particles $\{q_t^{(j)}, w_t^{(j)}; j=1,...,J\}$
 - Two steps: (i) propagate the particles governed by the motion model;
 - (ii) update the weights using the observation model.
 - The state estimate q_t^* can be a MMSE, MAP, or other estimate based on $p(q_t/Y_{1:t})$ or $\{q_t^{(j)}, w_t^{(j)}; j=1,...,J\}$.

- Strategy: appearance-adaptive
 - State and observation models adaptive to appearances in the video
- Adaptive observation model
 - $T\{Y_t; q_t\} \equiv Z_t = A_t + V_t$
 - A_t is a mixture appearance model (MAM) adaptive to all past observations
- Adaptive motion model
 - Time-varying Markov model: $q_t = q_{t-1} + U_t$
 - Adaptive noise variance; $U_t = n_t + r_t U_0$; $U_0 \sim N(0, S_0)$
 - The mean n_t and the 'variance' function r_t , both time-varying, adapt to the incoming frame Y_t

- Mixture of 3 components: stable, wandering, fixed
 - Stable ('S-') component captures a slowly-varying structure in the appearance.
 - Wandering ('*W*-') component captures a rapidly-varying structure in the appearance.
 - Fixed ('*F*-') component, which is optional, captures a constant structure in the appearance.
 - Each component has *d* pixels, assumed to be Gaussian.
- IEEE Transactions on Image Processing, Nov. 2004

•

- Background/foreground modeling
- Integrating intensity and motion information overcomes difficulties due to low contrast and low resolution
- Simultaneous tracking of background and foreground motions improves estimation of the motion parameters and segmentation.
 - Particle weights can be adjusted using the quality of Motion and appearance cues.

Airborne Video Examples

- Analysis of motion signature for segmentation of humans and human/vehicle classification
 - The reference signal is based on periodicity and symmetry of human motion - Twin pendulam model of walking motion
- Assuming that the intensity at a periodic pixel (*i*, *j*) is the sum of a periodic signal *M*(*i*, *j*)(*t*) and an additive Gaussian noise *n*(*t*), perform statistical hypothesis testing.

$$x_t(i,j) = M_t(i,j) + n(t)$$
$$= \mu(i,j) + \sum_{k=1}^{\infty} [\alpha_k \cos(k\omega t) + \beta_k \sin(k\omega t)] + n(t)$$

Airborne Video Examples

Detected object sequence

Frame: 12x24 Object size: 10x15

The "DNA" of Human Motion

- Look at X-t plane
 - Twin-pendulam model generates a helical structure
 - Spatio-temporal slices at various heights shown

• The "DNA" of human motion codes:

- Video verification and identification (VIVID)
 - Novel view synthesis of objects for improved recognition.
 - · Use of discrete features and bundle adjustment
 - Homography based method (BMVC Sept. 2005)
 - Factorization algorithm (IEEE Motion Workshop, Jan. 2005)

- Get the uncalibrated homography H_{π} between two frames induced by the ground plane using the appearance based tracker.
 - Compute the calibrated homography *H* by $H = K_2^{-1}H_{\pi}K_1$ where K_1 and K_2 are the calibration matrices obtained from metadata.
- Decompose $H = R(I \varsigma tn^T)$, where *R* is the rotation between the two frames, *t* is the translation between the two frames, and n^T is the surface normal for the ground plane [Bill Triggs,1998].

- For a distant plane as in airborne video, the estimated *t* and *n*^T might be unreliable but *R* is still accurate.
- The infinite homography H_k^{inf} for each pair of frames is computed from the rotation matrix R_k as $H_k^{\text{inf}} = K_k R_k K_1^{-1}$
- A block matrix *W* is constructed by stacking all the transformed inter-frame homographies, and factorized into the camera center vector $[\bar{t}_k]$ and the ground plane surface normal n^T using SVD:

$$W = \begin{pmatrix} \hat{H}_2 \\ \hat{H}_3 \\ \vdots \\ \hat{H}_n \end{pmatrix} = \begin{pmatrix} \bar{t}_2 \\ \bar{t}_3 \\ \vdots \\ \bar{t}_n \end{pmatrix} n^T$$

View Synthesis Using Homography

- Given the desired viewing direction R_{new} with respect to the reference frame, generate new homography from R_{new} and n^T : $H_{new} = K_{new} (R_{new} - tn^T) K_1^{-1}$
- A cubic interpolation is used to get the smooth synthesis result.

Input Video Frames

38-05-02

- Video stabilization, mosaicking and superresolution
 - Egomotion estimation
 - Use of IMU
 - Sub-pixel alignment
 - Background and foreground motion analysis
- Resources required
 - Reliable metadata (Time, frame, aspect angle, slant range, resolution, platform altitude, latitude, longitude)
 - · Biology

- Terrain modeling and navigation
 - Estimation of terrain height using optical flow
 - Landmark recognition
 - Path planning for navigation
- Video metrology
 - Measuring the height of man-made structures
 - Dynamic mensuration
- Resources required
 - DTED, Camera calibration, Biology

- DCIT of humans and vehicles
 - Accurate positioning of moving objects
 - Video-based target recognition
 - Combatants/noncombatants
 - Handling Occlusion by buildings, trees etc
- Resources required
 - Fingerprinting algorithms
 - Kinematic motion models, terrain models

- Human/vehicle activity analysis
 - Anomaly detection
 - Interpretation of source to sink trajectories
 - Models for activities
- Motion trajectories shapes activities
 - Factorization theorem for activity modeling
 - Statistical shape models for activity modeling
- Resources required
 - Ontology for characterizing activities
 - Interactions with end users

- Behavior analysis of insects has led to advances in navigation, control systems etc.
- Goal: To automate tracking and labeling of insect motion i.e., track the position and the behavior of insects.
- Ashok Veeraraghavan spending 10 weeks in ANU.

.

Anatomical Modeling

- All insects have similar anatomy.
- Hard Exoskeleton, soft interior.
- Three major body parts- Head, Thorax and abdomen.
- Each body part modeled as an ellipse.
- Anatomical modeling ensures
 - Physical limits of body parts are consistent.
 - Accounts for structural limitations.
 - Accounts for correlation among orientation of body parts
 - Insects move in the direction of their head.

Waggle Dance

- Foragers perform waggle dance.
- Orientation of waggle axis Direction of Food source.
- Intensity of waggle dance Sweetness of food source.
- Frequency of waggle Distance of food source.
- Recruits follow the dancer.
- Behavior Modeling:

Markov Model on basic motions.

